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Abstract

Swirling jets show at Reynolds numbers in the transitional and
low turbulence regime several competing flow forms due to
shear and centrifugal instabilities. The swirling flow in jets at
swirl numbers high enough to generate breakdown bubbles is
simulated numerically using an accurate Navier-Stokes solver
in cylindrical coordinates. The vector lines for vorticity and the
Lamb vector are computed and analyzed in detail. The main re-
sult is that the set of critical points of the Lamb vector field con-
tains stable and unstable manifolds characterizing high shear
regions.

Introduction

The interpretation of flow fields can be guided by vector lines
associated with vector properties of the flow. It is well known
that streamlines, pathlines and streaklines generated by the ve-
locity field give a unique picture of a steady flow, but differ sig-
nificantly for unsteady flows as simple examples show (Hama,
[1]). Turbulent flows are always unsteady and it is important
to study vector lines generated by a variety of vector fields
to gain an understanding of the kinematics and the dynamics
of the flow. Velocity, vorticity and Lamb vector fields in axi-
symmetric, swirling jets are considered for this purpose with
the emphasis on the Lamb vector. The Lamb vector is the cross
product of vorticity and velocity and is, therefore, an indicator
of regions of a flow field where vorticity is nonzero. It shares
with velocity and vorticity critical points, but possesses addi-
tional critical points where the flow is locally Beltrami, i.e. a
pure corkscrew motion.

Swirling jets show at Reynolds numbers in the transitional and
low turbulence regime several competing flow forms due to
shear and centrifugal instabilities ([3], [5], [4]). The swirling
flow in jets at supercritical swirl numbers generating breakdown
bubbles is simulated numerically using a hybrid spectral - finite
difference method for the solution of the Navier-Stokes solver
in cylindrical coordinates. The vector lines for vorticity and the
Lamb vector are generated for this flow and analyzed in detail.

Numerical Method

The hybrid spectral finite-difference method developed in [6]
is applied to solve the Navier-Stokes equations in cylindrical
coordinates. The details including the verification of its accu-
racy and convergence properties are presented in [6] and [7].
The method takes advantage of the fact that smooth functions
are periodic with respect to azimuthal variable and the discrete
Fourier transform [8] is applicable, which is for axi-symmetric
flows reduced to a single mode. The axial and radial directions
are discretized using finite difference methods with formal ac-
curacy at inner points up to 8" order. The time integrator is
an explicit 4™M-order state space Runge-Kutta method that re-
quires minimal storage (see [6]). The Poisson/Helmholtz equa-
tions for streamfunction and pressure modes (see for [6] details)
are solved using LU-decomposition (LINPACK, see Dongarra
et al.[9]) combined with deferred corrections for bandwidth re-
duction.

Evolution of vector lines

The vector lines associated with vorticity and the Lamb vector
are used as indicators for the variation of the swirling jet flow
with time and the change of boundary conditions. The proper-
ties of the Lamb vector are discussed first.

Properties of the Lamb vector

The Lamb vector is defined as the cross product of velocity and
vorticity
L=vxOxv 1)

It has interesting properties that can be exploited for the analysis
of recirculation zones. The notion of the critical structure of the
Lamb vector field is helpful for this analysis. It is defined as the
set of points where L = 0 and all stable and unstable manifolds
intersected with the hull of the support of the vorticity field.
The Lamb vector is trivially zero in irrotational zones, hence
these regions are excluded. It will be shown that the critical
structure of the Lamb vector field is particularly well suited for
the detection of shear layers.

It is easy to show that the momentum balance for incompress-
ible fluids can be rearranged in terms of vorticity. It emerges
in the Lamb-Gromeka form as (the volume force is assumed to
have a potential ®)

J0 1 1 0
This form of the momentum balance shows that viscosity has
no influence on momentum transport if vorticity is zero, the vis-
cous term is the curl of vorticity which is called flexion vector
(Truesdell [2]). The left side of (2) is not acceleration since the
gradient part of the convective acceleration is combined with
the pressure and the potential of the volume force. If vorticity is
zero, it follows from the Stokes theorem that velocity has also a
potential and (2) leads to a Bernoulli theorem [2].

The Lamb-Gromeka form of momentum balance (2) contains
the Lamb vector (1) representing the rotational part of the con-
vective acceleration in the sense that the curl of the convective
acceleration is equal to the curl of the Lamb vector. The Lamb
vector furnishes a geometric interpretation of the case of steady
inviscid flow with nonzero vorticity. The momentum balance
(2) emerges then in the form

OH =L ®3)

where H denotes the Bernoulli head
1
H = QVBVB+E+¢ @)

Equation (3) can be interpreted as follows: The gradient of H
is in the direction normal to the surface formed by streamlines
and vortex lines. This surface has the Lamb vector as normal
vector and is called Lamb surface. It follows that the gradient
has only one nonzero component normal to the Lamb surface
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Figure 1: Velocity (vg dashed line, v, thin full line), vortic-
ity (Qg dotted line, Q, dot-dashed line) and the Lamb vector
component L, (thick full line) for the swirling column example
(cg=0,=1,S=2).

and we obtain the result that H=constant on the Lamb surface.
This relation is satisfied for steady inviscid vortical flows and
the Bernoulli head H depends in general on the particular Lamb
surface chosen.

Further properties of the Lamb vector follow from the properties
of velocity and vorticity. Elementary vector identities show that
the Lamb vector can be represented by

0 1 0Vy
La = E(EVBVB) *VBM (%)

This form can be seen as the difference between the gradient of
the kinetic energy and the convective acceleration. The diver-
gence of the Lamb vector is nonzero even for incompressible
flows, given by
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The example of linear Couette flow v = Axp, Vo = v3 =0 gen-
erates the divergence 0-L = A2 where the Lamb vector is ori-
ented in the positive X, direction Ly = 6(,72A2x2. The Lamb vec-
tor field can be interpreted as the flow (regarding the Lamb vec-
tor as velocity) generated by a uniform distribution of sources
with strength A2, This vector field has the xq-axis as unstable
manifold.

The evolution of the Lamb vector is for incompressible Newto-
nian fluids governed by the pde

DL 1 1 5

Dt = pwx Op+vx (w s)+ReI] L @)
(where s= (0Ov+DOvT) denotes the rate of strain) which fol-
lows at once from mass and momentum balances. The Lamb
vector is created or destroyed by two distinct processes. The
first source term is the cross product of vorticity and the pres-
sure gradient. It is zero if these two vectors are aligned and it
is always present in plane flows. The second source is analogu-
ous to the vortex stretching term in the vorticity equation. It is
easy to show that it is zero for plane flows and that it produces
exponential growth in three-dimensional flows if the Lamb vec-
tor is aligned with the eigenvector of the rate of strain tensor
associated with the middle (positive) eigenvalue.  The critical
structure of the Lamb vector field is a point set containing the
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Figure 2: Detail of the Lamb vector lines at t = 154.8 for
Re = 2000 and swirl number S= 1.40. The Lamb vector field
is shown as red arrows
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Figure 3: Swirl number as function of time for Re= 2000 and
swirl number S=1.4.

Figure 4: Vorticity lines at t = 154.8 for Re = 2000 and swirl
number S= 1.40.
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Figure 5: Vorticity lines at t = 167 for Re = 2000 and swirl
number S=1.4.

critical point sets for velocity and vorticity as the definition (1)
shows. In addition to the critical points for velocity and vor-
ticity, Beltrami points, where velocity and vorticity are aligned,
appear in the critical set of the Lamb vector.

Example for Lamb vector lines

The properties of the Lamb vector lines can be illustrated in an
example. A swirling column of fluid is considered with velocity
given in cylindrical coordinates by

Ve =0, Vo(r)=——>_ exp( r2)
R NG 203"
1 r?
Vo(r) = —=exp(— =
o) = e 505)
The vorticity components follow from their definitions at once
Q =0, Qqf)= —— exp( r2)
r==u, 0 = 0_:23 o 20_% )
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The Lamb vector for this parallel flow has only one nonzero
component

Q,(r)=—

L= o= Den-y- _exp(- D)
- o§v2m o3 03’ o%v/2n 02

This implies that the radial locations where L, = 0 (see the thick
line in fig.1, which has apparently three roots) are in fact stag-
nation lines in the r — zplane for the Lamb vector. In particular,
the symmetry axis for axi-symmetric flows is in general stagna-
tion line for the Lamb vector. The example indicates that two
critical structures appear in a rotating fluid column: The center
being an unstable manifold (line source) surrounded by a sta-
ble manifold (cylindrical surface). This is the situation that is
emerging in the simulation of the swirling jet as shown in fig.6,
7 and in greater detail in fig.2. The details in the latter figure
show the presence of several stable and unstable manifolds with
the Lamb vectors as red arrows. The axis r = 0 changes from
stable (sink) to unstable (source) with increasing z/D.
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Figure 6: Lamb vector lines at t = 154.8 for Re = 2000 and
swirl number S=1.4.

The Lamb vector lines away from the critical structure can be
explained for regions where Bernoulli holds. Consider a stream-
line where the Bernoulli head H is constant, then is the Lamb
vector parallel to the gradient of the Bernoulli head according to
(3), hence orthogonal to the streamline. This is evident in fig.6,
fig. 7 and fig.2.

Results for axi-symmetric flows

The simulation of axi-symmetric swirling jets were done for the
Reynolds number Re defined by
Re= v2(0,20)D ®)
Y
the present results are for Re = 2000, and the swirl number S
defined by Billant et al. [5] as

_ 2w(R/2,20)
S: SZ(Oa ZO)

where zyg = 0.4D (D is the nozzle diameter), in the range S=
1.0 — 1.45, the present value is S= 1.4. The resolution was
set to 121 x 251 gridpoints in radial and axial direction for the
fourth order discretization of the non-convective spatial deriva-
tives and the fifth order upwind-biased scheme for the convec-
tive terms. The entrance boundary conditions are a smooth top-
hat profile for the axial velocity and a smooth profile for the
azimuthal velocity with the maximum at r/D = 0.25. The en-
trance conditions were varied in time in cyclical fashion to fol-
low the creation and destruction of the recirculation zones. The
wind-down and wind-up phases of the entrance conditions are
controlled with a C*-function (partition of unity) interpolating
smoothly between the maximal and minimal values. The vari-
ation of the swirl with time at the entrance boundary is given
in fig.3. Four wind-down and wind-up cycles are computed and
the results are presented in terms of vector lines for vorticity
and the Lamb vector.

©)

Vector line results

The entrance boundary conditions for the azimuthal and the
axial velocity are varied in time in a cyclical pattern to gen-
erate identical conditions with respect to the boundary condi-
tions shifted by a finite time interval. The variation of the re-
sulting swirl number (9) with time is given in fig.3. The third
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Figure 7: Lamb vector lines att = 167 for Re = 2000 and swirl
number S=1.4.

and fourth cycle of wind-down and wind-up in the time inter-
vals [100,120] and [150,170] are suitable for the structural in-
vestigation as the flow is sufficiently developed. The states at
t = 154.8 and t = 167 are selected in the winding-down and
winding-up phases of the fourth cycle, the two times corre-
spond approximately to the same value of the Swirl number
S=0.7. The corresponding vector line pictures for the asso-
ciated wind-down and wind-up states are presented in fig.4, fig.
6 att = 154.8 (Vorticity lines) and fig.5, fig.7 att = 167 (Lamb
vector lines). The vortex lines in fig.4 and fig.5 in the subdo-
main D = [4,5.2] x [0,1] show different connectedness, hence
are topologically different in the two corresponding states.

The Lamb vector lines in fig.6 and fig.7 are in parts of the flow
domain, where Bernoulli holds, orthogonal to the streamlines
and possess critical points and stable and unstable manifolds
where it does not hold. The manifolds are dominant and their
number changes between the corresponding states of the flow.
In particular, the subdomain 7 contains att = 154.8 stable and
unstable manifolds, which form a sorce point at the wind-up
phase att = 167. The core regionin0<z<2and0<r<0.5
att = 167 forms a swirling column of fluid as presented in the
example above.

Conclusions

The simulation of axi-symmetric swirling flows in jets at super-
critical Swirl numbers shows that repeated self-similar variation
of the entrance boundary conditions does not produce topolog-
ically equivalent flow states as measured by the vector lines of
vorticity and the Lamb vector. The comparison of correspond-
ing states in the down and upwinding phases produce critical
structures which are topologically different. The Lamb vector
lines possess stable and unstable manifolds indicating regions
of high shear in addition to isolated critical points.
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