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1. Abstract
Wind Farm Layout Optimization (WFLO) is a typical model-based complex system design process, where the
popular use of low-medium fidelity models is one of the primary sources of uncertainties propagating into the esti-
mated optimum cost of energy (COE). Therefore, the (currently lacking) understanding of the degree of uncertainty
inherited and introduced by different models is absolutely critical (i) for making informed modeling decisions,
and (ii) for being cognizant of the reliability of the obtained results. A framework called the Visually-Informed
Decision-Making Platform (VIDMAP) was recently introduced to quantify and visualize the inter-model sensi-
tivities and the model inherited/induced uncertainties in WFLO. Originally, VIDMAP quantified the uncertainties
and sensitivities upstream of the energy production model. This paper advances VIDMAP to provide quantifica-
tion/visualization of the uncertainties propagating through the entire optimization process, where optimization is
performed to determine the micro-siting of 100 turbines with a minimum COE objective. Specifically, we deter-
mine (i) the sensitivity of the minimum COE to the top-level system model (energy production model), (ii) the
uncertainty introduced by the heuristic optimization algorithm (PSO), and (iii) the net uncertainty in the minimum
COE estimate. In VIDMAP, the eFAST method is used for sensitivity analysis, and the model uncertainties are
quantified through a combination of Monte Carlo simulation and probabilistic modeling. Based on the estimated
sensitivity and uncertainty measures, a color-coded model-block flowchart is then created using the MATLAB GUI.

2. Keywords: Model-based systems design, Particle Swarm Optimization, Sensitivity analysis, Uncertainty quan-
tification, Wind farm layout optimization.

3. Introduction:
3.1 Model-based Systems Design
Computational approximation models are crucial building blocks of most design processes in the 21st century.
This includes both physics-based models (e.g., FEA and FVM) and statistical models (e.g., surrogate models
and empirical models). An informed application of such computational models demands the knowledge of how
uncertainties, both inherited and introduced by such models, propagate through the model-based design process.
In a broader sense, the complexity of a system and/or the inability to fully understand and address it can also be
perceived as uncertainty.

There exists very few quantitative design frameworks that determine the uncertainty in the information flowing
along a design optimization process, and even fewer in the arena of visualizing information attributes in the model-
based design process. Allaire et al. [1] presented a new definition of system complexity and a quantitative measure
of that complexity based on information theory. They performed sensitivity analysis to indicate key contributors to
system complexity. This method created opportunities to use the complexity information, to make better modeling
decisions, towards increasing the reliability of the resulting designs. While making a uniquely important contri-
bution towards model-based complex system design, in its current form (that does not involve visualization), this
method does not provide a strategy to actually integrate design automation and human decision-making.

In a recent paper, Chowdhury et al. [2] explored the hypothesis that, ”such integration could be accomplished
by a visualization platform that will enable the user/designer to be cognizant of the criticality, fidelity, and expense
of information at any stage or model-level of the design process”. In other words, such a visual platform will allow
the designer to make informed modeling decisions in a model-based complex system design (MB-CSD) process.
In that paper, a new framework concept was proposed to quantify and visualize the inter-model sensitivities (infor-
mation criticality) and the uncertainty (information fidelity) introduced by each model in the process of designing
wind farm layouts − this framework was called a Visually-Informed Decision-Making Platform or VIDMAP.
Wind farm layout design is a complex process, which involves multiple layers of highly non-linear models and
highly uncertain input parameters. In this initial implementation of VIDMAP, Chowdhury et al. [2] demonstrated
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a quantification and visualization of the inter-model sensitivities and model-induced uncertainties leading up to
the estimation of the energy production of a 100 turbine wind farm. The VIDMAP visualization obtained thereof
provided a unique illustration of which models and input parameters (in this case, turbine power response and wake
width estimation models, and turbine features) have the strongest impact on the energy production estimations.

3.2 Impact of VIDMAP
The end goal of understanding (and analyzing) the inter-model sensitivities and the model-induced uncertainties
along a MB-CSD process is to accomplish a desirable level of reliability in the final solutions (or designs) at an
acceptable expense and within a reasonable time-frame. To this end, the user is required to make modeling deci-
sions, such as: (i) model selection, (ii) specification of prescribed model parameters and/or kernel functions, (iii)
sampling or design of experiments, (iv) model improvement, (v) grid refinement, and (vi) computational resource
allocation. These modeling decisions can be partly automated and partly user-guided (through informed decision-
making), only if measure(s) of pertinent information attributes are available to guide quantitative decision-making.
With VDIMAP, we are exploring the potential of constructing and using a novel platform that quantifies and pro-
vides a visual representation of these information attributes.

In this paper, we are presenting a significant advancement to the development and implementation of VIDMAP,
with the following research objectives:

1. Develop a computationally-efficient approach to exploit the previously quantified uncertainty in the top-level
system evaluation model in estimating the sensitivities and uncertainty of the final optimum design, where
the system evaluation model itself comprises several uncertain downstream models.

2. Quantify the uncertainty introduced by a heuristic optimization algorithm into the final optimum design.

3. Apply the new VIDMAP to the entire wind farm layout optimization (WFLO) process, thereby extending
the visualization platform from the ”energy production model” (demonstrated in [2]) to the optimum Cost
of Energy (COE) obtained by WFLO.

A brief discussion of the wind farm layout optimization (WFLO) process and existing methods in this arena is
provided in Section 4.1. Sections 4.2 and 4.3 respectively provide an overview of VIDMAP and the advancement
of VIDMAP (undertaken in this paper) in order to apply it to the entire WFLO process. Illustration and discussion
of the results obtained from the application of the advanced VIDMAP to WFLO is provided in Section 5.

4. An Informed Approach to Model-based Design of Wind Farm Layouts
4.1 Wind Farm Layout Optimization
The energy losses in a wind farm due to wake effects can be reduced by optimizing the selection and the arrange-
ment of turbines over the site, a process commonly known as wind farm layout optimization (WFLO). Two primary
classes of turbine arrangement (or layout optimization) methods exist in the literature: (i) methods that divide the
wind farm into a discrete grid in order to search for the optimum grid locations of turbines [3, 4, 5, 6], (ii) more
recent methods that define the turbine location coordinates as continuous variables, thereby allowing turbines to
take up any feasible location within the farm [7, 8, 9]. A few of the above methods also allow optimal selection
of commercial turbines along with optimal turbine arrangement [9, 10]. A majority of these wind farm layout
optimization methods seek to either maximize energy production or minimize the cost of energy (COE).

In this paper, we use the Unrestricted Wind Farm Layout Optimization framework [9], as it is one of the most
comprehensive WFLO frameworks in terms of the variety of design and natural factors that it incorporates in the
process of searching for the most optimal wind farm layouts. More specifically, the energy production model [9],
the land usage model [11], and the optimization methodology [9] used in demonstrating VIDMAP are all adopted
from the UWFLO framework. In UWFLO, the COE (in $/kWh) of a wind farm is expressed as

COE =Cf arm/Ef arm (1)

where Cf arm and the E f arm are respectively the average annual cost (in $) of the wind farm and the average annual
energy production (in kWh) of the wind farm. There are several wind farm cost models in the literature [12, 13, 14],
which are generally empirical in nature, and represent cost in terms of different sets of parameters such as turbine
features, nameplate capacity, and labor costs. The energy production model in the UWFLO framework is a complex
model that represents the wind farm energy production as a function of the turbine features, turbine locations, and
the incoming wind conditions over a given period of time.

The energy production model is a collection of several models: (i) the wind distribution model that estimates
the frequency of wind speeds based on the measured site data; (ii) the wind shear model that determines the wind
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speed at a given height above the ground (generally the hub height) based on measured/reference wind speed at a
different height; (iii) the wake model that estimates the wake width and the wind speed in the wake downstream
from each turbine within the farm; and (iv) the turbine power response model that yields the power generated by
each turbine with respect to the wind speed directly encountered by the turbine. The energy production of the wind
farm (E f arm) is estimated as a numerical integration of the wind farm power generation over a distribution of wind
conditions, which can be expressed as:

Ef arm = (365× 24)
Np

∑
i=1

Pf arm
(
Ui,θ i) p

(
Ui,θ i)ΔUΔθ , where ΔUΔθ =Umax × 360◦/Np (2)

where Pf arm
(
Ui,θ i

)
represents the power generated by the farm (in kW) for the i th sample wind speed (U i) and

direction θ i − estimated using the wind shear model, the turbine power response model, and the wake model. In
Eq. 2, p

(
Ui,θ i

)
represents the probability of the occurrence of the i th sample wind wind condition, which is given

by the wind distribution model. The parameters Umax and Np are respectively the reference maximum wind speed
at a site (e.g., 15 m/s) and the number of sample wind conditions considered (20 in this paper).

Wind farm layout optimization (WFLO) can be readily perceived as a complex system design process. The
energy production of a wind farm depends on several compound factors, such as (i) atmospheric boundary layer
(ABL) variations, (ii) local topography, (iii) turbine geometry, (iv) turbine power characteristics, (v) arrangement
of turbines over the site. These factors themselves comprise of multiple sub-factors or characteristics; e.g., the
ABL, even in its simplest representation, consists of (i) mean wind speed and direction, (ii) turbulence intensity,
(iii) wind shear, and (iv) air density, all of which vary with time and space. Several of these factors are highly
uncertain, and the implicit functional relationships are highly nonlinear. In addition, high-fidelity estimations of
some of these functional relationships have extensive computational footprint, making them practically prohibitive
in the context of designing utility-scale wind farms− e.g., with current high-fidelity LES wake models (e.g., NREL
SOFWA ), one will require approximately 600 million CPU-hours for optimizing a 25-turbine wind farm [15, 9].

WFLO thus comprises a series of interdependent/interconnected models. A information flow perspective to
WFLO can therefore enable significant advancements in informed decision-making compared to the state of the
art. VIDMAP provides such an information flow visualization for WFLO through a synergistic implementation of
sensitivity analysis, uncertainty quantification, and a novel visual interface. In its complete form, VIDMAP could
provide a major leap forward not only in addressing issues of “wind farm underperformance” and “concept-to-
installation delays”, but also in effective “risk mitigation” in wind energy projects. The following section describes
the major components of VIDMAP in the context of WFLO.

4.2 Visually-Informed Decision-Making Platform (VIDMAP)
The Visually-Informed Decision-Making Platform (VIDMAP) for WFLO comprises the following 3 components:

1. Uncertainty Quantification: Uncertainty quantification (UQ) is in general performed in VIDMAP to gauge
the fidelity or quality of information at any stage in the design process; in other words, UQ techniques are
applied to estimate the uncertainty in the originating information (i.e., inputs to the most upstream models),
and to subsequently estimate the uncertainty generated by the models (themselves) along the design process.

2. Sensitivity Analysis: Sensitivity analysis is performed for each constitutive model (in the design process) to
gauge the relative impact of different inputs (incoming information) on the model output (outgoing informa-
tion). It essentially illustrates the inter-model dependency/sensitivities within the design process.

3. Informed Graphical Representation: A graphical user interface (GUI) is created to illustrate the uncertainty
in the information generated by each model and the inter-model sensitivities.

The VIDMAP GUI is therefore intended to be an important step towards integrating design automation, evolv-
ing heuristics, and human decision-making in the context of model-based design. The VIDMAP GUI is developed
using the MATLAB GUI toolbox, and associated built-in functions. The initial VIDMAP GUI constructed in [2],
which shows the entire WFLO framework and specifically illustrates the estimated inter-model sensitivities and
model uncertainties up to the energy production model stage, is shown in Fig. 1.

In Fig. 1, the color bar shows a qualitative representation (e.g, high/low) of the uncertainty and sensitivity.
Variance is used as the measure of uncertainty, and is normalized w.r.t. reference values to allow ready comparison
across different models. The measure of sensitivity used in this case is the variance-based first-order index, which
can take any positive real value less than or equal to 1. These sensitivity indices are estimated using the Extended
Fourier Amplitude Sensitivity Test (eFAST), developed by Saltelli and Bolado [16].
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Figure 1: The VIDMAP graphical interface for WFLO, where (i) the color of a model block depicts the uncertainty
in the corresponding model output;(ii) the color of a connector depicts the sensitivity of the corresponding down-
stream model output to the upstream information-source; and (iii) a gray-colored block or connector indicates that
the corresponding sensibility or uncertainty values have not yet been computed

The approaches used to quantify the uncertainty in the upstream models, and propagate the uncertainty down-
stream, is further described in [2] In this paper, we particularly extend the VIDMAP for WFLO to estimate the
uncertainty introduced by the PSO algorithm, the sensitivity of the minimum COE (associated with the optimized
layout) to the uncertainties in the “energy production model”, and the resulting uncertainty in the minimum COE.
The WFLO problem definition and the VIDMAP advancements are discussed in the next Section.

4.3 Advancing VIDMAP for WFLO
The objective of wind farm layout optimization here is to minimize the cost of energy (COE) of a 100-turbine
wind farm, for given (i) turbine type(s), (ii) maximum allowed land area per MW installed (LAMI), (iii) land
aspect ratio, and (iv) wind distribution. A Rayleigh distribution of wind speed is considered, where the single-
parameter Rayleigh distribution is estimated from the given average incoming wind speed (U av). The variables
in the optimization problem are the locations of each turbine (X j,Yj) − a total of 200 design variables. The
optimization problem is defined as

Min
V

f =COE (V,T )

subject to
g1 (V )≤ 0
g2 (V )≤ 0
V = {X1,X2, ......,X100,Y1,Y2, ......,Y100}

(3)

where the COE is estimated from Eq. 1; T represents the turbine type (a vector of features for a given commercial
turbine); the inequality constraint g1 represents the minimum clearance required between any two turbines, which
is set at ”2× rotor diameter” of the installed turbines; and the inequality constraint g 2 represents the maximum
allowed LAMI (AMW ). Since a land aspect rario of 7/3 is assumed, the farm dimensions can be estimated from the
maximum allowed LAMI as: L =

√
7/3× 100AMW and B =

√
3/7× 100AMW .

In order to decouple the variance of the energy production model from that of the independent parameters,
the deviation in the output (E f arm, given by Eq. 2) of the energy production model is represented by a stochastic
parameter (εE ) that follows the probability distribution determined via uncertainty propagation in [2] − where
Ef arm had an estimated variance of 0.0063. Thus, the return value from the energy production model (the top-level
system evaluation model) whenever it is called by the optimization algorithm is given by f E = Ef arm (1+ εE). The
effective set of input parameters for the sensitivity analysis and uncertainty quantification of the minimized COE
is provided in Table 1; this table also shows the upper and lower bounds of the input parameters, and the sampling
strategy for these parameters. The first three inputs are the independent inputs, and the last input represents the
stochastic deviation in the energy production estimates.
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Table 1: Continuous Design variables

Input Parameter Lower Bound Upper Bound Sampling Strategy

Average Wind Speed (Uav) 3.5 m/s 10.0 m/s Normal Distribution with mean= 5.6m/s and σ = 1.3m/s [17]
Turbine Feature Vector (Ti) i = 1 i = 24 Uniform
Land Area per MW (AMW ) 10 ha/MW 50 ha/MW Uniform Pseudorandom (LHS) [2]
Deviation in WF Energy Production (εE ) -∞ ∞ Normal Distribution with zero mean and σ = 0.079 [2]

Based on the information provided in Table 1, a mixture of 50 samples is created with the following three
parameters: Average Wind Speed (Uav), Land Area per MW (AMW ), and Deviation in WF Energy Production
(εE ). WFLO is then performed for each sample w.r.t. each turbine type (turbine feature vector). For the sake of
computational efficiency, a small set of 24 different turbine types are chosen from the comprehensive list of 131
commercial turbines considered in [2]. Therefore, WFLO is performed for a total set of 50× 24= 1200 samples.

Heuristic optimization algorithms such as particle swarm optimization (PSO) and genetic algorithms (GA)
involve random operators, and are also initiated with randomly generated population of candidate designs. As a
result, the optimum solution obtained by such heuristic optimization algorithms could vary from one run to another.
Hence, these algorithms are generally run multiple times to gauge their robustness during benchmark testing or
practical application. In this paper, WFLO is performed using the mixed-discrete PSO adopted from the UWFLO
framework [18]. The uncertainty introduced by the PSO algorithm (due to its random operators) is estimated
by running WFLO with this algorithm 5 times for each of the 1200 samples. The number of optimization runs
per sample although small is considered practically adequate, since the observed variance in the PSO results was
small, and it also helped in retaining desirable computational efficiency of the overall VIDMAP framework. The
uncertainty in the estimated minimum (σ PSO

f ) due to the PSO algorithm is then determined by

σPSO
f =

stddev
(

f PSO
1 , . . . , f PSO

5

)

min
(

f PSO
1 , . . . , f PSO

5

) (4)

where the generic f PSO
k represents the optimum value of the objective function obtained in the k th run of PSO for

a given sample. The resulting VIDMAP GUI for the overall WFLO framework is illustrated next.

5. VIDMAP for WFLO: Results
It is observed from Fig. 2 that the optimization algorithm is significantly robust with an average estimated vari-

Figure 2: The final VIDMAP graphical interface for WFLO; gray colored blocks represent deterministic models;
otherwise the color of a block represents the corresponding model uncertainty

ation in the obtained minimum over 5 runs (for each sample) of only 0.12%. This observation further establishes
the use the PSO as a suitable algorithm for WFLO. The sensitivity of the computed minimum COE to the energy
production model appears to be small (from Fig. 2) due to the first order index of 0.00118. However, it is to be
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noted that the total order index of the deviation in the output of the energy production model is estimated to be 0.87.
This observation indicates that the impact of the uncertainties in the energy production model is highly coupled
with the variation in the wind resource, allowed land usage, and selected turbine features. Hence, the uncertainty
in the energy production model is likely to influence decision-making when multiple wind farm sites, multiple
turbine configuration, and different land plot availability is being considered in the planning stage of wind farm
development. Moreover, it indicates that VIDMAP needs to be further advanced to illustrate both the first and total
order indices with respect to inter-model sensitivities.

6. Concluding Remarks
In this paper, we advanced the Visually-Informed Decision-Making Platform to understand and analyze the im-
pact of the uncertainties in the system model and the heuristic optimization algorithm on the uncertainties in the
minimum Cost of Energy (COE) obtained through wind farm layout optimization. VIDMAP was applied in the
layout optimization of a 100 turbine wind farm, where 1200 different samples of allowed land usage, wind re-
source strengths, turbine configurations, and (previously quantified) deviations in the energy production estimates
are used to perform the sensitivity and uncertainty analysis. The uncertainty due to the random operators in the
optimization algorithm (Particle Swarm Optimization) was determined by running the algorithm 5 times for each
sample. It was observed that the Particle Swarm Optimization algorithm is remarkably robust, whereas the total
order sensitivity of the minimum COE with respect to the deviations in the energy production estimates and the
input parameters was noticeable.
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