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1. Abstract

Wind farm layout optimization (WFLO) is the process of optimizing the location of turbines in a wind
farm site, with the possible objective of maximizing the energy production or minimizing the average cost
of energy. Conventional WFLO methods not only limit themselves to prescribing the site boundaries,
they are also generally applicable to designing only small-to-medium scale wind farms (<100 turbines).
Large-scale wind farms entail greater wake-induced turbine interactions, thereby increasing the computa-
tional complexity and expense by orders of magnitude. In this paper, we further advance the Unrestricted
WFLO framework by designing the layout of large-scale wind farms with 500 turbines (where energy pro-
duction is maximized). First, the high-dimensional layout optimization problem (involving 2N variables
for a N turbine wind farm) is reduced to a 6-variable problem through a novel mapping strategy, which
allows for both global siting (overall land configuration) and local exploration (turbine micrositing). Sec-
ondly, a surrogate model is used to substitute the expensive analytical WF energy production model; the
high computational expense of the latter is attributed to the factorial increase in the number of calls to
the wake model for evaluating every candidate wind farm layout that involves a large number of turbines.
The powerful Concurrent Surrogate Model Selection (COSMOS) framework is applied to identify the
best surrogate model to represent the wind farm energy production as a function of the reduced variable
vector. To accomplish a reliable optimum solution, the surrogate-based optimization (SBO) is performed
by implementing the Adaptive Model Refinement (AMR) technique within Particle Swarm Optimization
(PSO). In AMR, both local exploitation and global exploration aspects are considered within a single
optimization run of PSO, unlike other SBO methods that often either require multiple (potentially mis-
leading) optimizations or are model-dependent. By using the AMR approach in conjunction with PSO
and COSMOS, the computational cost of designing very large wind farms is reduced by a remarkable
factor of 26, while preserving the reliability of this WFLO within 0.05% of the WFLO performed using
the original energy production model.
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3. Introduction

The wind energy harvested through large utility-scale wind farms can compete with conventional
energy resources. A large utility-scale wind farm generally has a 500 MW installed capacity (can consist
hundreds of wind turbines). Planning such a large scale wind farm is a complex process and extremely
time-consuming. It includes various mutually correlated factors and large-scale effects, especially the
energy losses due to the wake effects caused by a large number of turbines. The wind farm layout opti-
mization (WFLO) for large-scale wind farms is desired, however, performing the WFLO of a large scale
wind farm is computationally expensive. Surrogate-based optimization approaches can be applied to
alleviate the computational burden in this complex design problem.

3.1 Surrogate-base Optimization

Surrogate models are purely mathematical models (i.e., not derived from the system physics) that
are used to provide a tractable and inexpensive approximation of the actual system behavior. They are
commonly used as an alternative to expensive computational simulations or to the lack of a physical model
in the case of experiment-derived data. Major surrogate modeling methods include Polynomial Response
Surfaces, Kriging, Moving Least Square, Radial Basis Functions (RBF), Support Vector Regression(SVR),
and Neural Networks [1]. These methods have been applied to a wide range of disciplines, from aerospace
design and automotive design to chemistry and material science [2].



The major pitfall in using surrogate models in optimization is that they can often mislead the search
process, leading to suboptimal or infeasible solutions. To address this issue and provide optimum designs
with high fidelity system evaluations, “Surrogate-Based Optimization” strategy can be applied. In these
approaches, the accuracy and robustness of the surrogate model is improved by adding points where
additional evaluations of the high fidelity model / experiment are desired to be performed. Infill points
are generally added in (i) the region where the optimum is located (local exploitation); and/or (ii) the
entire design space to improve the global accuracy of the surrogate (global exploration)[3, 4]. Infill points
can be added in a fully sequential (one-at-a-time), or can be added in a batch sequential manner. There
exist various criteria for determining the locations of the infill points including (i) Index-based criteria
(e.g., Mean Square Error and Maximum Entropy criteria) and (ii) Distance-based criteria (e.g., Euclidean
distance, Mahalonobis distance, and Weighted distance criteria) [5].

Over the last two decades, different Surrogate-Based Optimization strategies have been developed [6,
7). Trosset and Torczon in 1997 [8] proposed an approach where the balance between exploitation
and exploration was considered using the aggregate merit function, f(x) — pdmin(z), where, dpin(x) =
l\/gcin ||z — 2|, p> 0. It is important to note that, this technique is independent of the type of surrogate

modeling technique being considered. Jones et al. in 1998 [6] developed a well-known model management
strategy that is based on an Expected Improvement (EI) criterion, and is called Efficient Global Optimiza-
tion (EGO). This powerful approach is however generally limited to surrogate models based on Gaussian
processes. The surrogate-based optimization presented in this paper has the following characteristics:
(i) It is independent of the type of model, (ii) It uses a reliable surrogate model (with a desired level of
fidelity) at any given iteration of SBO, and (iii) It determines the optimal batch size for the infill points
for the upcoming iteration of SBO.

3.2 Layout Optimization of Large Scale Wind Farms

The current research on solving the large layout optimization problem is mostly limited to quantify
the layout using the streamwise and the spanwise spacings between turbines, and assumes that a specified
number of turbines are uniformly distributed in pre-defined boundaries. As a result, the optimization is
incompletely performed due to the prescribed conditions. Fuglsang et al. [9] defined the wind farm layout
as a function of the spacings between rows and columns for a specified number of turbines. Perez et
al. [10] used the numbers of rows and columns, the streamwise spacing and the spanwise spacing between
neighboring turbines, the turbine rotor diameter, and a specified rectangular boundary to determine the
wind farm layout. Wagner et al. [11] developed a framework that can solve the WFLO for up to 1000
turbines. In this framework, the initial location of turbines is restricted to an array-like layout. However,
a radial displacement around each turbine is allowed. The approach presented in this paper is capable
of optimizing the location of turbines for large wind farms, i.e., 500-turbine scale wind farms, without
prescribing the farm boundaries.

4. Mapping of the Layout for a Large Scale Wind Farm

In this section, we present a mapping approach to quantify the layout of a very large wind farm using
six mapping factors: (i) the maximum allowable streamwise and spanwise spacings between neighboring
turbines (S$ymae and rmaz), (i) the average spacings of rows and columns (d, and d..), (iii) the normalized
local radial displacement, (iv) the turbine rotor diameter (D), (v) Number of turbines (Ngup), (vi) the
farm site orientation (¢), and (v) the maximum number of rows and/or the maximum side length of the
wind farm. The maximum allowable streamwise and spanwise spacings between neighboring turbines are
determined based on the size of turbine rotor diameter. the average spacings of rows and columns are
variable for difference rows and columns, and given by
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where S5, and 7,4, are the minimum streamwise and spanwise, respectively; A and B are design factors
in mapping function; ¢ and j are respectively the row and column indexes; N4 and Neoymn are number
of rows and column, respectively. By this definition, non-uniform spacings between rows and columns
are allowed.

In this paper, the normalized local radial displacement is expressed as the Gaussian distribution with
zero mean (p = 0) and the variable standard deviation (o) [11]. The actual radial displacement is



obtained by multiplying the minimum streamwise/spanwise between turbines. This allows the turbines
not to be restricted to be in the grid form. The side length of the wind farm can provided based on the
average land usage of US commercial wind farms. Therefore, the coordinates of the turbine at the I*"
row and the J** column are given by
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5. Surrogate model selection using COSMOS

In Section 4, the dimensionality reduction is performed. In this section, the Concurrent Surrogate
Model Selection (COSMOS) framework (developed by Chowdhury et al. [12]) is applied to select the
best surrogate model to represent the average annual energy production of a large-scale wind farm as
a function of the mapping factors and the farm site orientation (¢), illustrated in Table 2. In this
paper .This automated model selection is based on the error measure given by the Predictive Estimation
of Model Fidelity (PEMF) [13] and Mixed Integer Nonlinear Programing (MINLP). Unlike most other
model selection methods, the COSMOS framework coherently operates at all the three levels necessary
to facilitate optimal selection, i.e., (i) selecting the model type (e.g., RBF or SVR), (ii) selecting the
kernel function type (e.g., cubic or multiquadric kernel in RBF), and (iii) determining the optimal values
of the typically user-prescribed parameters (e.g., shape parameter in RBF) — thereby allowing selection
of globally competitive models. COSMOS offers five different criteria for selection of optimal surrogates.
In the current implementation, three of them are selected including: (i) the median error (E™2,), (ii) the
maximum error (E7°,), and (iii) the variance of the median error (E7.,).

Next, the proposed approach is implemented in a 500-turbine wind farm. In this problem, the number
of sample points for training the surrogate models considered in the COSMOS framework is N({X}) = 200
and the average annual energy production in these sample points is estimated using the model incor-
porated in the Unrestricted Wind Farm Layout Optimization framework [14]. The surrogate models
identified using COSMOS for the average annual energy production of a large-scale wind farm under
the mentions threes criteria, are listed in Table 1. In this problem, the selected surrogate model will be

Table 1: The set of surrogate models given by COSMOS for the wind farm energy production problem

COSMOS TEST Pareto Surrogate Model Selected
Test I min[E™?,, Eme ] Kriging with Linear correlation , SVR with Sigmoid kernel
Test IT: min[E™?,, E. .| | Kriging with Linear & Exponential correlation , SVR with Sigmoid kernel

used as an initial model in the surrogate-based optimization process. In the surrogate-based optimiza-
tion process, the fidelity of surrogate model iteratively should be improved by adding infill points in the
optimization process. Therefore, Kriging model with Linear correlation function that is selected in Test
I and Test IT could be the best choice. The dimensionality reduction and the implementation of the sur-
rogate model reduce the computational cost on a very large wind farm layout optimization more than 95%.

4. Adaptive Model Refinement (AMR)

The major challenge of using surrogate models in optimization is that they can often mislead the
search process due to underestimation or overestimation of system behavior and leading to suboptimal or
infeasible solutions. To address this issue, surrogate-based optimization with adaptive model refinement
(AMR) [15] is applied in this paper. In AMR, reconstruction (or refinement) of the model is performed
by sequentially adding a batch of new samples at any given iteration (of surrogate-based optimization
(SBO)) when a switching metric is met. The major components of the surrogate-based optimization
using AMR method include:

(i) The model switch metric [16]: This metric is perceived as a decision-making tool for the timing of
surrogate model refinement. Performing model refinement (by adding infill points) too early in the
optimzaiton process can be computationally expensive while wasting resources to explore undesirable
regions of the design domain. On the other hand, updating surrogate model too late might mislead
the search process early on to suboptimal regions of the design domain, i.e., leading to scenarios



where the global optimum is outside of the region spanned by the population of candidate solutions
in later iterations.This metric is formulated by comparing (1) the uncertainty associated with the
outputs of the current model, and (2) the distribution of the latest fitness function improvement over
the population of candidate designs. Whenever the model switching metric is met, the history of the
fitness function improvement is used to determine the desired fidelity for the upcoming iterations
of SBO.

(ii) The Predictive Estimation of Model Fidelity [13]: In AMR, the PEMF method with certain imple-
mentation is used to quantify the surrogate model fidelity, and identify the optimal batch size (e.g.,
size of infill points). The inputs and outputs of PEMF (in the AMR method) are expressed as:

[P(ﬂayaz)’ Flnfill] = fPEJvIF (X7 E*) (3)

where the vector X represents the sample data (input and output) used for training the surrogate
model; and * is the desired fidelity in the model refinement process. In Eq. 3, P(,,_ .y, and ['1/%!
respectively represent the distribution of the error in the surrogate model, and the batch size for
the infill points to achieve a desired level of fidelity in the AMR method.

(iii) Optimization algorithm: Mixed-Discrete PSO (MDPSO): In the presented surrogate-based opti-
mization methodology, optimization is performed using an advanced implementation of the Particle
Swarm Optimization (PSO). In this paper, we use one particular advanced implementation of the
PSO algorithm called Mixed-Discrete PSO (MDPSO), which was developed by Chowdhury et al
[17].

6. Numerical Experiments

In this section the proposed approach is implemented to design a 500-turbine wind farm for measured
site data, in order to illustrate the effectiveness of this unique wind farm layout optimization approach.
The objective is to maximize the average annual energy production of the farm through layout optimiza-
tion (Pyqrm = annual energy production/365 x 24). In this problem, the farm layout optimization is started
using the best surrogate model selected in Sec. 4 (Kriging with Linear correlation function). To reach a
reliable optimum solution, a refinement of the surrogate is then performed by sequentially adding batches
of new samples using the adaptive model refinement approach. The optimization problem is defined as

max: [ = Prarm
V ={vi,v9,...,u}
subject to
91(v) <0
92(v) <0
yLower < < yUpper
The upper and lower bounds of design variables (v; = 1,2,...,6) are listed in Table 2.

These variables include the mapping factors (that
defines the coordinates of the wind turbines in

the farm), and the farm site orientation (¢). In Table 2: Upper and lower bounds of design variables

Eq. 4, ¢g1(v)=||[Ayw — 45(hectare/MW)]|| is the land Design variables | Lower bound | Upper bound
area constraints. This constraint is defined based Tmazx 5D 15D

on the average land usage of US commercial | Smaz 5D 15D
wind farms in 2009. In this equation, g(v) | A4 —20 20

=y N, maz{[4AD — d;;]} is the minimum inter- | B -20 20
turbine spacing constraints. In this paper, the o 0 1
GE-1.5MW-XLE turbine is chosen as the specified ) 0 90

turbine-type [18]; the minimum streamwise (Smin)

and spanwise (rmin) are set to the same value: 4D; and the wind data is obtained from the North Dakota

Agricultural Weather Network (NDAWN)[19].

7 Results and Discussion

In this optimzation problem, the AMR is applied at every iteration of PSO. The population size of
PSO is pre-specified to N,,, = 300, and the PSO algorithm converges by satisfying the predefined function




tolerance, §f = 1e — 6. In this problem the model refinement will be implemented if the current size of data
set is less than N({X}) =500 In this optimization problem, the initial population of particles is generated
using the Kriging with Linear correlation function. The AMR approach adaptively improve the fidelity of
the surrogate model fifteen times during the optimization process (over a total of 110 iterations), resulting
in an optimum design with a reasonable level of fidelity.
Figure 1 represents the improvement of the
0.034 model fidelity for the wind farm energy produc-
tion problem through the sequential model refine-
ment process using the AMR method. This figure
illustrates that the error (estimated using PEMF)
decreases with sequential addition of batches of
infill points in SBO, thus showing that the batch
size of the infill points and the location of these
points determined by the AMR method resulted
in lower error in the refined (updated) surrogate
model. It should also be noted that the novel use
of the modal value in the PEMF method, promotes
0.01 : : : : : : ‘ a decrease of the error measure with infill points,
0 50 100 150 200 250 300 350 as opposed to the untraceable noisy variation that
Number of infill points ) L.
is often characteristic of mean or RMS error mea-

Figure 1: The improvement of the surrogate model "% [13].

fidelity through sequential model refinement process The convergence lr'nsto'ry of the optimization
with AMR problem is illustrated in Fig. 2. These figures also

indicate: (i) the active surrogate model at each it-

eration (using different colors), (ii) the size of data
set (N({X}) = NCwrent({X}) + TT*/il) used to refine (update) the active surrogate model in the AMR, ap-
proach, and (iii) the iteration that the model refinement is performed (the AMR metric is met). It is
observed that, from the first iteration till the 8 iteration the initial surrogate model with N({X}) =200 is
active, before refining the model using additional 19 sample data through the AMR approach. The final
switching event, from the surrogate model constructed using N({X}) = 496 training points to the surrogate
model constructed using N({X}) = 513, occurs at the 96" iteration. The optimization progresses using the
surrogate model constructed using N({X}) = 513 training points for another 14 iterations before reach-
ing convergence. In this case, the algorithm converges by satisfying the predefined function tolerance,
o0f =1le—6.
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Figure 2: Convergence history of the surrogate-based optimization using AMR

Next, we investigate how the AMR method performs better than simply using the single stage sampling
strategy for SBO. The result yielded by the AMR method are therefore compared with the results yielded
by running MDPSO using the surrogate model constructed in the one-step method (using all 500 sample
points). The optimum results are thus obtained, and the total number of function evaluations in each
case are reported in Table 3. The final column of this table shows the actual function estimate for
the optimum design obtained under each optimization run. It is observed that the PSO-AMR not only
requires 26 times less computing time compared to PSO-HF, it also provides the optimum value that is
14.9 MWh better that simply using the single stage sampling strategy for SBO. It is also observed that,
in the PSO-AMR approach, the optimum is located in the region where the SM model has 0.63% error.



Table 3: Optimization results using different optimization approaches

N B B L B " Optimum Model in No. of HF response
Approach ! V2 U3 Y4 s Y6 function Pfapm last HF function at optimum Anw
x D | xD (degree) (f* x 10%) iteration evaluations (fur(v*) x 10%)
PSO-SM 14.03 | 13.40 | 15.68 | 4.72 | 0.05 70.73 2.3013 SM 500 2.1248 29.7085
PSO-HF 13.70 | 13.54 | 16.27 | 4.92 | 0.08 69.69 2.2760 HF 300 x 45 2.2760 43.80
PSO-AMR | 12.65 | 12.57 | 9.99 | -2.53 | 0.03 72.17 2.2892 SM 513 2.2748 44.74
PSO-SM: optimization performed by MDPSO solely using the surrogate model with all 500 sample points

PSO-HF: optimization performed by MDPSO solely using the high fidelity model
PSO-AMR: optimization performed by MDPSO using AMR approach (surrogate-based optimization using AMR)

8 Conclusion

This paper presented a new approach for layout optimization of very large scale wind farms. A

mapping of the wind farm layout to the detailed turbine coordinates was created, allowing the wind farm
layout to be represented by a set of 6 parameters. As a result, the design variable space for optimizing
the layout of a large scale wind farm is significantly reduced. The COSMOS framework was then applied
to select the globally-best surrogate model to represent the energy production of the wind farm as a
function of the reduced set of layout variables. Surrogate-based optimization was then preformed using

the Adaptive Model Refinement approach, implemented through Particle Swarm Optimization.

The

objective of wind farm layout optimization was to maximize the average annual energy production of a
500-turbine wind farm. The results indicated that AMR along with Mixed Discrete PSO improved the
efficiency of the optimization process by a factor of 26 when compared to optimization using the standard
energy production model, while retaining an accuracy of within 0.05% of the latter.
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